❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.
What is Telegram Possible Future Strategies?
Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.
Библиотека собеса по Data Science | вопросы с собеседований from tr